Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamic digital holographic interferometry with three wavelengths

Open Access Open Access

Abstract

A color digital holographic interferometry movie was produced by applying the subtraction digital holography method in a quasi-Fourier off-axis experimental setup. The movie was numerically recorded and replayed from three sets of digital holograms obtained with three different laser lines (476 nm, 532 nm, and 647 nm). The movie shows convective flows induced by thermal dissipation in a tank filled with oil.

©2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Digital three-color holographic interferometry for flow analysis

Jean-Michel Desse, Pascal Picart, and Patrice Tankam
Opt. Express 16(8) 5471-5480 (2008)

Enhanced sensitivity digital holographic interferometry

Nazif Demoli, Marc Torzynski, and Dalibor Vukičević
Opt. Express 15(17) 10672-10680 (2007)

Subtraction digital holography

Nazif Demoli, Jurica Mes̆trović, and Ivica Sović
Appl. Opt. 42(5) 798-804 (2003)

Supplementary Material (1)

Media 1: AVI (1758 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup for recording quasi-Fourier off-axis digital holograms.
Fig. 2.
Fig. 2. Phase object used in experiments.
Fig. 3.
Fig. 3. Object reconstruction obtained from the three monochromatic digital holograms.
Fig. 4.
Fig. 4. First four color digital holographic interferograms.
Fig. 5.
Fig. 5. Red component of the color interferograms shown in Fig. 4.
Fig. 6.
Fig. 6. (1.76 MB) Color movie of convective flows induced by thermal dissipation, composed from the sequence of digital holographic interferometry images.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

u x 1 y 1 = R 0 δ x 1 x 0 y 1 y 0 + S 0 exp [ i 2 π λ n x 1 y 1 z d z ] ,
u x 2 y 2 = R 0 C 0 exp { i ψ x 2 y 2 } + s x 2 y 2 ,
s x 2 y 2 = α · S 0 ,
I ( x 2 , y 2 ) = ( R 0 λd ) 2 + s ( x 2 , y 2 ) 2
+ R 0 λd s ( x 2 , y 2 ) exp [ i ψ ( x 2 , y 2 ) ] + R 0 λd s * ( x 2 , y 2 ) exp [ i ψ ( x 2 , y 2 ) ] ,
I ( x 2 , y 2 , t n ) = ( R 0 λd ) 2 + s ( x 2 , y 2 , t n ) 2
+ R 0 λd s ( x 2 , y 2 , t n ) exp [ i ψ ( x 2 , y 2 ) ] + R 0 λd s * ( x 2 , y 2 , t n ) exp [ i ψ ( x 2 , y 2 ) ]
Δ I ( x 2 , y 2 , t n ) = I ( x 2 , y 2 , t 0 ) I ( x 2 , y 2 , t n )
[ s ( x 2 , y 2 , t 0 ) s ( x 2 , y 2 , t n ) ] exp [ i ψ ( x 2 , y 2 ) ] + C C
s ( x 2 , y 2 , t n ) exp [ i φ ( x 2 , y 2 , t 0 ) + φ ( x 2 , y 2 , t n ) 2 ] × sin [ Δ φ ( x 2 , y 2 , t n ) 2 ]
× exp [ i π λd ( x 2 2 + y 2 2 ) ] × exp [ i 2 π λd ( x 2 x 0 + y 2 y 0 ) ] + C C ,
Δ φ ( x 2 , y 2 , t n ) = 2 π λ Δ n ( x 2 , y 2 , z , t n ) d z ,
Δ n ( x 2 , y 2 , z , t n ) = n ( x 2 , y 2 , z , t 0 ) n ( x 2 , y 2 , z , t n )
Δ n ( x 2 , y 2 , z , t n ) d z = m λ ( x 2 , y 2 , t n ) λ , m λ = 0 , 1 , 2 ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.