Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coaxial periodic optical waveguide

Open Access Open Access

Abstract

Guided modes in a dielectric waveguide structure with a coaxial periodic multi-layer are investigated by using a matrix formula with Bessel functions. We show that guided modes exist in the structure, and that the field is confined in the core which consists of the optically thinner medium. The dispersion curves are discontinuous, so that the modes can exist only in particular wavelength bands corresponding to the stop bands of the periodic structure of the clad. It is possible that the waveguide structure can be applied to filters or optical fibers to reduce nonlinear effects.

©2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Effects of Optical Layer Impairments on 2.5 Gb/s Optical CDMA Transmission

Helena X. C. Feng, Antonio J. Mendez, Jonathan P. Heritage, and William J. Lennon
Opt. Express 7(1) 2-9 (2000)

Magneto-optical coaxial waveguide with toroidal magnetization

Nikolay A. Gusev, Andrey N. Kalish, Anatoly K. Zvezdin, and Vladimir I. Belotelov
J. Opt. Soc. Am. B 33(8) 1789-1795 (2016)

Negative refractive index in coaxial plasmon waveguides

René de Waele, Stanley P. Burgos, Harry A. Atwater, and Albert Polman
Opt. Express 18(12) 12770-12778 (2010)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. A waveguide structure with one-dimensional periodic structures.
Fig. 2.
Fig. 2. Definition of propagation direction of a wave in a periodic structure.
Fig. 3.
Fig. 3. Coaxial periodic optical waveguide.
Fig. 4.
Fig. 4. Cross-section.
Fig. 5.
Fig. 5. Dispersion curves for k 0 c=1.0
Fig. 6.
Fig. 6. Dispersion curves for k 0 c=5.0
Fig. 7.
Fig. 7. Stopband of a coaxial periodic optical waveguide.
Fig. 8.
Fig. 8. Stopband of a one-dimensonal photonic band gap structure.
Fig. 9.
Fig. 9. z-direction components of magnetic field of TE-polarized mode and electric field of TM-polarized mode, where k=1.2k 0 and β=0.7859[TE], 0.5270[TM].
Fig. 10.
Fig. 10. z-direction components of magnetic field of TE-polarized mode and electric field of TM-polarized mode, where k=3.0k 0 and β=0.9672[TE], 0.9672[TM].
Fig. 11.
Fig. 11. Intensity of EM wave field in CPOW, excited by TE01 mode. |T|=0.986, |R|=0.007.
Fig. 12.
Fig. 12. Intensity of EM wave field in CPOW, excited by TE21 mode. |T|=0.479, |R|=0.049.
Fig. 13.
Fig. 13. Intensity of EM wave field in CPOW, excited by TM01 mode. |T|=0.440, |R|=0.106.
Fig. 14.
Fig. 14. Intensity of EM wave field in CPOW, excited by TM21 mode. |T|=0.049, |R|=0.493.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

cos k TE ( a + b ) = n 1 2 cos 2 θ 1 + n 2 2 cos 2 θ 2 2 n 1 n 2 cos θ 1 cos θ 2 sin ( n 1 cos θ 1 k a ) sin ( n 2 cos θ 2 k b )
+ cos ( n 1 cos θ 1 k a ) cos ( n 2 cos θ 2 k b )
cos k TM ( a + b ) = n 2 2 cos 2 θ 1 + n 1 2 cos 2 θ 2 2 n 1 n 2 cos θ 1 cos θ 2 sin ( n 1 cos θ 1 k a ) sin ( n 2 cos θ 2 k b )
+ cos ( n 1 cos θ 1 k a ) cos ( n 2 cos θ 2 k b ) ,
cos k TE ( a + b ) > 1 ,
cos k TM ( a + b ) > 1 ,
r i = { n ( b + a ) + c i = 2 n n ( b + a ) + b + c i = 2 n + 1 ( n = 0 , 1 , 2 , 3 , ) .
i = { I i = 2 n II i = 2 n + 1 ( n = 0 , 1 , 2 , 3 , ) .
E z ( r ) = { A i J m ( q i r ) + B i Y m ( q i r ) } sin ( m ϕ + θ m )
H z ( r ) = { C i J m ( q i r ) + D i Y m ( q i r ) } cos ( m ϕ + θ m ) ,
[ E z ( r ) H z ( r ) E ϕ ( r ) H ϕ ( r ) ] = U · T ( r , i ) · u i
U [ sin ( m ϕ + θ m ) 0 0 0 0 cos ( m ϕ + θ m ) 0 0 0 0 cos ( m ϕ + θ m ) 0 0 0 0 sin ( m ϕ + θ m ) ]
T ( r , i ) [ J m ( q i r ) Y m ( q i r ) 0 0 0 0 J m ( q i r ) Y m ( q i r ) j β m J m ( q i r ) q i 2 r j β m Y m ( q i r ) q i 2 r + j ω μ 0 J ' m ( q i r ) q i + j ω μ 0 Y ' m ( q i r ) q i j ω i J ' m ( q i r ) q i j ω i Y ' m ( q i r ) q i + j β m J m ( q i r ) q i 2 r + j β m Y m ( q i r ) q i 2 r ]
u i = [ A i , B i , C i , D i ] t .
T ( r i , i ) · u i = T ( r i , i + 1 ) · u i + 1 .
u 0 = i = 0 n R i · u n + 1 , R i T 1 ( r i , i ) · T ( r i , i + 1 ) ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.