Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation

Open Access Open Access

Abstract

The development of non-invasive, biomedical optical imaging from time-dependent measurements of near-infrared (NIR) light propagation in tissues depends upon two crucial advances: (i) the instrumental tools to enable photon “time-of-flight” measurement within rapid and clinically realistic times, and (ii) the computational tools enabling the reconstruction of interior tissue optical property maps from exterior measurements of photon “time-of-flight” or photon migration. In this contribution, the image reconstruction algorithm is formulated as an optimization problem in which an interior map of tissue optical properties of absorption and fluorescence lifetime is reconstructed from synthetically generated exterior measurements of frequency-domain photon migration (FDPM). The inverse solution is accomplished using a truncated Newton’s method with trust region to match synthetic fluorescence FDPM measurements with that predicted by the finite element prediction. The computational overhead and error associated with computing the gradient numerically is minimized upon using modified techniques of reverse automatic differentiation.

©1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Active constrained truncated Newton method for simple-bound optical tomography

Ranadhir Roy and Eva M. Sevick-Muraca
J. Opt. Soc. Am. A 17(9) 1627-1641 (2000)

Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements

Margaret J. Eppstein, David E. Dougherty, Tamara L. Troy, and Eva M. Sevick-Muraca
Appl. Opt. 38(10) 2138-2150 (1999)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Figure 1
Figure 1 Schematic of fluorescence photon migration.

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

· [ D x ( r ) Φ x ( r , ω ) ] + [ i ω c + μ a xi ( r ) + μ a xf ( r ) ] Φ x ( r , ω ) = 0 on Ω
· [ D m ( r ) Φ m ( r , ω ) ] + [ i ω c + μ a m ( r ) ] Φ m ( r , ω ) = ϕμ a x m 1 1 i ωτ Φ x ( r , ω ) on Ω
Φ x r ω 2 γ D x ( r ) Φ x r ω n + S δ ( r r s ) = 0 on d Ω
γ = ( 1 + r d ) ( 1 r d )
r d = 1.44 n rel 2 + 0.72 n rel 1 + 0.668 + 0.063 n rel
Ω [ · ( D x Φ x ) + ( i ω c + μ a xi + μ a xf ) Φ x ] w j d Ω = 0 j = 1,2 , , N
Ω [ D x ( Φ x ) · ( w j ) + ( i ω c + μ a xi + μ a xf ) Φ x w j ] d Ω Γ D x w j Φ x n d Γ = 0
Γ D x w j Φ x n d Γ = 1 γ Γ ( Φ x + S ) w j d Γ = 1 γ Γ Φ x w j d Γ + 1 γ Γ S w j d Γ
Ω [ D x ( Φ x ) ( w j ) + ( i ω c + μ a xi + μ a xf ) Φ x w j ] d Ω 1 γ Γ Φ x w j d Γ = 1 γ Γ S w j d Γ
el = 1 M [ Ω el [ D x el ( Φ x el ) ( w j ) + ( c + μ a xi + μ a xf el ) Φ x el w j ] + 1 γ Γ el Φ x el w j ] =
el M [ 1 γ Γ el S w j ]
Φ x el = j = 1 3 L j ( Φ x ) j
w j = L j for j = 1,2 , , N
el = 1 M [ Ω el [ D x el ( Φ x el x L j x + Φ x el y L j y ) + ( c + μ a xi + μ a xf el ) L j ] Φ x el + 1 γ Γ el Φ x el L j ] =
el = 1 M [ 1 γ Γ el S L j ]
el = 1 M [ K 1 el + K 2 el + K 3 el ] Φ x el = el M r el
S = S δ ( r r S )
Γ el S δ ( r r s ) d Γ = { S r s Γ el 0 otherwise
r el = 1 γ Γ el L j ( r r s ) = 1 γ L j ( r s ) S
( r el ) j = 1 γ S
el = 1 M [ Ω el [ D m el ( Φ m el x L j x + Φ m el y L j y ) + ( i ω c + μ a m ) Φ m el L j ] d Ω + 1 γ Γ el Φ m el L j ] =
el = 1 el [ Ω el Φ x el μ a x m el ϕ ( 1 + ω τ el ) L j d Ω ]
K Φ ̄ x , m = b
( N B 1 ) N S N
( N B 1 ) N S 2 N
E x , m ( μ a xf ) = 1 2 l = 1 N s j = 1 N B j l ( ( ( ( Φ x , m ) l ) j ) c ( ( ( Φ x , m ) l ) j ) me ( ( ( Φ x , m ) l ) j ) me ) ( ( ( ( Φ x , m * ) l ) j ) c ( ( ( Φ x , m * ) l ) j ) me ( ( ( Φ x , m * ) l ) j ) me )
E x = E x ( μ a xf ) = Re j d Ω ( ( ( Φ x * ) c ( Φ x * ) me ( Φ x ) me ( Φ x * ) me ) , ( Φ x ) c ( μ a xf ) )
E m = E m ( τ ) = Re j d Ω ( ( ( Φ m * ) c ( Φ m * ) me ( Φ m ) me ( Φ m * ) me ) , ( Φ m ) c ( τ ) )
E m = E m ( μ a x m ) = Re j d Ω ( ( ( Φ m * ) c ( Φ m * ) me ( Φ m ) me ( Φ m * ) me ) , ( Φ m ) c ( μ a x m ) )
E x , m ( μ ¯ a k + d ) = E x , m ( μ ¯ a k ) + Q ( d )
Q ( d ) = g k T d + 1 2 d T G k d
G k d = g k
r i g k min ( 1 k , g k )
G ( x ) d = 1 σ [ g ( x + σ d ) g ( x ) ]
R 1 = 0.01
R k + 1 = 2 R k if λ k 1.0
R k + 1 = 1 3 R k if λ k < 1.0
Given x i , i = 1 , , n For i = n + 1 , , P then if F i is binary x i = F i ( x j , x k ) , j , k < i and if F i is unary x i = F ( x j ) , . j < i f ( x ) = x n + P
f x i = j f x j F j x i j > i
Given x i , i = 1 , , P set x ̂ i = 0 , i = 1 , . , n + P 1 and x ̂ n + P = 1 for i = n + P , , n + 1
then, if F i is binary , x ̂ j = x ̂ j + x ̂ i F i x j i > j and x ̂ k = x ̂ k + x ̂ i F i x k i > j else if F i is unary , x ̂ j = x ̂ j + x ̂ i F i x j i > j derivatives g i = x ̂ i i = 1 , , n
( μ ̂ a xf ) p = E x , m ( μ a xf ) p = E x , m K K ( μ a xf ) p + E x , m b b ( μ a xf ) p
= el i , j ( K ̂ el ) i , j ( K i , j el ( μ a xf ) p ) + el j b ̂ j b j ( μ a xf ) p
K ̂ = E x , m K = E x , m Φ ¯ x , m Φ ¯ x , m K = Φ ¯ ̂ x , m Φ ¯ x , m K = Φ ¯ ̂ x , m Φ x , m μ ¯ a xf μ ¯ a xf K
K Φ ̄ x , m = b
K μ ̄ a xf Φ ¯ x , m + K Φ ¯ xf μ ¯ a xf = 0
K μ ¯ a xf = - K Φ ¯ x , m μ ¯ xf Φ ¯ x , m
μ ¯ xf K = K 1 Φ ¯ x , m Φ ¯ x , m μ ¯ a x , m
K ̂ = Φ ¯ ̂ x , m K 1 Φ x , m = v ¯ T Φ ¯ x , m
v ¯ = Φ ¯ ̂ K 1
K v ¯ = Φ ¯ ̂ x , m
b ̂ = E x , m b = E x , m Φ ¯ x , m Φ ¯ x , m b = Φ ¯ ̂ x , m Φ ¯ x , m b = Φ ¯ ̂ x , m Φ ¯ x , m τ ¯ τ ¯ b
K Φ ¯ x , m = b
K Φ ¯ x , m τ ¯ = b τ ¯
τ ¯ b = K 1 1 Φ ¯ x , m τ ¯
K b ̂ = Φ ¯ ̂ x , m
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.