Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavelet-based digital image watermarking

Open Access Open Access

Abstract

A wavelet-based watermark casting scheme and a blind watermark retrieval technique are investigated in this research. An adaptive watermark casting method is developed to first determine significant wavelet subbands and then select a couple of significant wavelet coefficients in these subbands to embed watermarks. A blind watermark retrieval technique that can detect the embedded watermark without the help from the original image is proposed. Experimental results show that the embedded watermark is robust against various signal processing and compression attacks.

©1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Wavelet transform based watermark for digital images

Xiang-Gen Xia, Charles G. Boncelet, and Gonzalo R. Arce
Opt. Express 3(12) 497-511 (1998)

Quantization index modulation-based image watermarking using digital holography

O. Erman Okman and Gozde Bozdagi Akar
J. Opt. Soc. Am. A 24(1) 243-252 (2007)

A dual Fourier-wavelet domain authentication-identification watermark

Farid Ahmed
Opt. Express 15(8) 4804-4813 (2007)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1. The blockdiagram of invisible watermark embedding and detection (a)embedding (b)detection.
Figure 2.
Figure 2. Watermark retrieval from the watermarked 512 × 512 gray-level Lena image after (a) the 6 × 6 block mosaic attack, (b)the 50% uniform random noise attack, (c) the JPEG compression attack with 5% quality factor setting, and (d) the 512:1 compression attack with SPIHT.
Figure 3.
Figure 3. Blind watermark retrieval for the gray-level Lena image of size 512×512 after (a) no attack, (b) soften filter attack, (c) JPEG compression attack and (d) 64:1 compression ratio attack by SPIHT.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

D = { T 2 12 σ 2 > T 2 12 , σ 2 , σ 2 > T 2 12 .
C s ( x , y ) = sign × ( a 0 T 2 0 + a 1 T 2 1 + + a b T 2 b + ) ,
T = C max , s 2 ,
C s , k ( x , y ) = C s ( x , y ) + α s β s T s W k ,
E s , k ( x , y ) = α s β s T s W k ,
MSE Σ s = 1 N s Σ j = 1 N bit H s j ( α s β s T s ) 2 Height × Width ,
MSE N w Height × Width ( α max ) 2 ( T max ) 2 ( β max ) 2 20.56 ,
α max 1 T max 20.56 × Height × Width N w .
E s , k * ( x , y ) = C s , k * ( x , y ) C s ( x , y ) .
SIM ( I * , I ) = N w Σ k = 1 N w E s , k * ( x , y ) · E s , k ( x , y ) E s , k * ( x , y ) E s , k ( x , y ) ,
C s , b , k ( x . y ) = sign × Δ p ( C s , b ( x , y ) ) × α s β s T s , b W k .
Δ p ( C s , b ( x , y ) ) = ( 1 + 2 p α s ) T s , b ,
DI S s , b , p ( x , y ) = Δ p ( C s , b ( x , y ) ) C s , b ( x , y ) .
p = arg min p DIS s , b , p ( x , y ) .
DIS s , b , p ( x , y ) 2 α s T s , b .
E s , k * ( x , y ) = C s , b , k * ( x , y ) sign × Δ p C s , b , k * ( x , y ) ,
MSE N w Height × Wight ( 2 α ) 2 ( T max ) 2 ( β ) 2 20.56 .
α max 1 4 T max 20.56 × Height × Width N w .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.