Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment

Open Access Open Access

Abstract

Using a combination of resist reflow to form a highly circular etch mask pattern and a low-damage plasma dry etch, high-quality-factor silicon optical microdisk resonators are fabricated out of silicon-oninsulator (SOI) wafers. Quality factors as high as Q=5×106 are measured in these microresonators, corresponding to a propagation loss coefficient as small as α~0.1 dB/cm. The different optical loss mechanisms are identified through a study of the total optical loss, mode coupling, and thermally-induced optical bistability as a function of microdisk radius (5-30 µm). These measurements indicate that optical loss in these high-Q microresonators is limited not by surface roughness, but rather by surface state absorption and bulk free-carrier absorption.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics

Mohammad Soltani, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 15(8) 4694-4704 (2007)

Improvement of thermal properties of ultra-high Q silicon microdisk resonators

Mohammad Soltani, Qing Li, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 15(25) 17305-17312 (2007)

Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths

Ehsan Shah Hosseini, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi
Opt. Express 18(3) 2127-2136 (2010)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic representation of a fabricated silicon microdisk. (a) Top view showing ideal disk (red) against disk with roughness. (b) Top view close-up illustrating the surface roughness, Δr(s), and surface reconstruction, ξ. Also shown are statistical roughness parameters, σ r and Lc , of a typical scatterer. (c) Side view of a fabricated SOI microdisk highlighting idealized SiO2 pedestal.
Fig. 2.
Fig. 2. Taper transmission versus wavelength showing a high-Q doublet mode for the R=30 µm disk. Qcλ 0/δλ c and Qsλ 0/δλ s are the unloaded quality factors for the long and short wavelength modes respectively, where δλ c and δλ s are resonance linewidths. Also shown is the doublet splitting, Δλ, and normalized splitting quality factor, Qβλ 0λ.
Fig. 3.
Fig. 3. Normalized doublet splitting (Qβ ) versus disk radius. (inset) Taper transmission data and fit of deeply coupled doublet demonstrating 14 dB coupling depth.
Fig. 4.
Fig. 4. Measured intrinsic quality factor, Qi , versus disk radius and resulting breakdown of optical losses due to: surface scattering (Qss ), bulk doping and impurities (Qb ), and surface absorption (Qsa ).
Fig. 5.
Fig. 5. Plot showing absorbed power versus intra-cavity energy for a R=5 µm disk to deduce linear, quadratic, and cubic loss rates. (inset) normalized data selected to illustrate bistability effect on resonance.

Equations (57)

Equations on this page are rendered with MathJax. Learn more.

1 Q i = 1 Q r + 1 Q s s + 1 Q s a + 1 Q b ,
Q β λ 0 Δ λ = 1 2 π 3 4 ξ ( V d V s ) ,
ξ = n ̅ 2 ( n d 2 n 0 2 ) n d 2 ( n ̅ 2 n 0 2 ) .
Q s s = 3 λ 0 3 8 π 7 2 n 0 δ n 2 ξ ( V d V s 2 ) ,
Q s a = π c ( n ̅ 2 n 0 2 ) R λ 0 n ̅ 2 γ s a ζ ,
R th = h ped ( κ Si O 2 π r max r min ) .
Δ λ 0 n Si λ 0 Δ n ( d n d T ) Si 1 Δ T R th 1 P abs ,
P abs = κ SiO 2 π r max r min n S i h ped d n d T Si λ 0 Δ λ 0 .
U c = Q i ω P L = Q i ω ( 1 T min ) P in ,
· D ( r , t ) = 0 × E ( r , t ) = B ( r , t ) t · B ( r , t ) = 0 × H ( r , t ) = D ( r , t ) t ,
2 F n 2 ( r ) c 2 2 F t 2 = 0 ,
( 2 ρ 2 + 1 ρ ρ + 1 ρ 2 2 ϕ 2 + 2 z 2 + ( ω c ) 2 n 2 ( r ) ) F ( r ) = 0 .
1 W ( 2 W ρ 2 + 1 ρ W ρ + 1 ρ 2 2 W ϕ 2 ) + 1 Z d 2 Z d z 2 + k 0 2 n 2 ( r ) = 0 ,
( 2 W ρ 2 + 1 ρ W ρ + 1 ρ 2 2 W ϕ 2 ) + k 0 2 n ̅ 2 ( ρ ) W = 0
d 2 Z d z 2 + k 0 2 ( n 2 ( z ) n ̅ 2 ) Z = 0 ,
2 Ψ ρ 2 + 1 ρ Ψ ρ + ( k 0 2 n ̅ 2 ( ρ ) m 2 ρ 2 ) Ψ = 0
2 Ω ϕ 2 + m 2 Ω = 0 .
k 0 n ̅ ( k 0 ) J m + 1 ( k 0 n ̅ ( k 0 ) R ) = ( m R + η α ) J m ( k 0 n ̅ ( k 0 ) R ) ,
Ψ ( ρ ) { J m ( k 0 n ̅ ρ ) ρ R J m ( k 0 n ̅ R ) exp ( α ( ρ R ) ) ρ > R .
J = i ω δ ε E 0 .
δ ε = ε 0 δ n 2 h Δ r ( ϕ ) δ ( r R ) δ ( z ) ,
A rad ( r ) = μ 0 4 π ( e i k 1 r r ) J ( r ) e i k 1 r ̂ · r d r ,
A rad ( r ) = i μ 0 ω h δ n 2 ε 0 E m ( R , 0 ) R 4 π ( e i k 1 r r ) 0 2 π Δ r ( ϕ ) e i m ϕ exp ( i k 1 R sin θ cos ϕ ) d ϕ .
A rad ( r ) · A rad ( r ) * = μ 0 ω h δ n 2 ε 0 E m ( R , 0 ) 4 π 2 ( R r ) 2 Θ
Θ 0 2 π 0 2 π C ( ϕ ϕ ) exp ( i m ϕ ϕ ) exp [ i k 1 R sin θ ( cos ϕ cos ϕ ) ] d ϕ d ϕ ,
Θ = 2 π 0 2 π C ( t ) exp ( i m t ) J 0 [ 2 k 1 R sin θ sin ( t 2 ) ] d t .
Θ = 2 π R π R π R σ R 2 exp ( s 2 L c 2 + i m R s ) J 0 [ 2 k 1 R sin θ sin ( s R 2 ) ] d s 2 π 3 2 σ R 2 L c R ,
S rad = r ̂ ω k 0 2 μ 0 r ̂ × A rad 2 = r ̂ ω k 1 3 n 0 ( δ n 2 ) 2 V s 2 ε 0 E m ( R , 0 ) 2 16 π r ̂ × e ̂ 2 r 2 ,
P rad = ( S · r ̂ ) r 2 d Ω = η ̂ π 7 2 ω n 0 ( δ n 2 ) 2 V s 2 ε 0 E m ( R , 0 ; η ̂ ) 2 G ( η ̂ ) λ 0 3 ,
Q ss = λ 0 3 π 7 2 n 0 ( δ n 2 ) 2 V s 2 Σ η ̂ u s ¯ ( η ̂ ) G ( η ̂ ) ,
u ¯ s ( η ̂ ) = ε 0 E 0 ( η ̂ ) s , avg 2 1 2 ε 0 ( r ) E 0 2 d r .
2 E μ 0 ( ε 0 + δ ε ) 2 E t 2 = 0 ,
2 E j 0 ( r ) + μ 0 ε 0 ( r ) ω j 2 E j 0 ( r ) = 0 .
E ( r , t ) = exp ( i ω 0 t ) j a j ( t ) E j 0 ( r ) .
j ( 2 i ω 0 ε 0 d a j d t + δ ε ω 0 2 a j ε 0 ( ω j 2 ω 0 2 ) a j ) E j 0 ( r ) = 0 .
d a k d t + i Δ ω k a k ( t ) = i j β j k a j ,
with β j k = ω 0 2 δ ε ( E j 0 ( r ) ) * E k 0 ( r ) d r ε 0 E k 0 ( r ) 2 d r ,
d a c w d t = i Δ ω a c w + i β a c c w
d a c c w d t = i Δ ω a c c w + i β a c w ,
β = ω 0 4 U c ε 0 δ n 2 h Δ r ( s ) δ ( r R ) δ ( z ) ( E c w ( r ) ) * E c c w ( r ) d r .
β = ω 0 δ n 2 h R ε 0 E m ( R , 0 ) 2 4 U c ϒ
ϒ = 0 2 π Δ r ( ϕ ) e i 2 m ϕ d ϕ .
ϒ 2 = 2 π R π R π R σ R 2 exp ( s 2 L c 2 + i 2 m R s ) 2 π 3 2 σ R 2 L c R .
d a c w d t = ( γ t 2 + i Δ ω ) a c w + i β a c c w + κ s
d a c c w d t = ( γ t 2 + i Δ ω ) a c c w + i β a c w ,
Q β = 2 π 3 4 δ n 2 V s u s ¯ .
γ ̅ s a = γ s a ( r ) n 2 ( r ) E ( r ) 2 d r n 2 ( r ) E ( r ) 2 d r ,
γ ̅ s a = γ s a n S i 2 δ V s a E ( r ) 2 d r n 2 ( r ) E ( r ) 2 d r = 1 2 γ s a n S i 2 u s ¯ δ V s a .
Q s a = 4 π c λ 0 γ s a n S i 2 u s ¯ δ V s a .
E s , avg 2 = 1 δ V R δ r R + δ r h 2 h 2 0 2 π ρ d ρ d ϕ d z E 2 ,
U c = 1 2 ε 0 ( r ) E 2 d r 1 2 ε 0 n d 2 0 R h 2 h 2 0 2 π ρ d ρ d ϕ d z E 2 .
u s ̅ ( Z ̂ ) = 2 n d 2 δ V R δ r R + δ r ρ d ρ [ J m ( k 0 n ̅ ρ ) ] 2 0 R ρ d ρ [ J m ( k 0 n ̅ p ) ] 2 .
u s ̅ ( Z ̂ ) = [ J m ( k 0 n ̅ R ) ] 2 π h n d 2 0 R ρ d ρ [ J m ( k 0 n ̅ ρ ) ] 2 2 n ̅ 2 V d n d 2 ( n ̅ 2 n 0 2 ) ,
Q s s = 3 λ 0 3 8 π 7 2 n 0 δ n 2 ξ ( V d V s 2 ) ,
Q β = 1 2 π 3 4 ξ ( V d V s ) ,
Q s a = π c ( n ̅ 2 n 0 2 ) R λ 0 n ̅ 2 γ s a ζ ,
ξ = n ̅ 2 ( n d 2 n 0 2 ) n d 2 ( n ̅ 2 n 0 2 ) .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved