Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Subspace-based method for phase retrieval in interferometry

Open Access Open Access

Abstract

A subspace-based method is applied to phase shifting interferometry for obtaining in real time values of phase shifts between data frames at each pixel point. A generalized phase extraction algorithm then allows for computing the phase distribution. The method is applicable to spherical beams and is capable of handling nonsinusoidal waveforms in an effective manner. Numerical simulations demonstrate phase measurement with high accuracy even in the presence of noise.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase-shifting interferometry by a covariance-based method

Abhijit Patil, Pramod Rastogi, and Benny Raphael
Appl. Opt. 44(27) 5778-5785 (2005)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Plot of the diagonal of S versus frequency for noiseless signal and signal with SNR=10 dB.
Fig. 2.
Fig. 2. Plots of phase step values α (in degrees) obtained using forward-backward approach at an arbitrary pixel point with different values of N and m.
Fig. 3.
Fig. 3. Plot shows typical wrapped phase φ (in radians) for phase step values obtained from Fig. 2(d) for 30dB noise.
Fig. 4.
Fig. 4. Plot shows typical absolute error obtained in computation of phase φ (in radians) for phase step values determined from Fig. 2(d) for 30dB noise.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I d c + k = 1 κ a k e i k φ k u k t + k = 1 κ a k * e i k φ k * ( u k * ) t + η ( t )
for  t = 0 , 1 , m , , N 1
r ( p ) = E [ I ( t ) I * ( t p ) ] = n = 0 2 κ A n 2 e i ω n p + σ 2 δ p , 0
R I = E [ I c ( t ) I ( t ) ] = [ r ( 0 ) r * ( 1 ) . . r * ( m 1 ) r ( 1 ) . . . . . . . . . . . . . r * ( 1 ) r ( m 1 ) . . . r ( 0 ) ]
R I = APA c R s + σ 2 I R ε
P = [ A 0 2 0 . 0 0 A 1 2 . . . . . . 0 . . A 2 κ 2 ]
R I G = G [ λ n + 1 0 . . 0 0 λ n + 2 . . . . . . . . . . . . 0 0 0 . . λ m ] = σ 2 G = APA c G + σ 2 G
a T ( z 1 ) G ̂ G ̂ c a ( z ) = 0
φ ( x , y ) = 2 π λ ( x x ) 2 + ( x y ) 2
R ̂ I = 1 2 N t = m N [ [ I * ( t 1 ) I * ( t 2 ) . . I * ( t m ) ] [ I ( t 1 ) I ( t 2 ) . . I ( t m ) ] + [ I * ( t m ) . . I * ( t 2 ) I * ( t 1 ) ] [ I ( t m ) . . I ( t 2 ) I ( t 1 ) ] ]
[ e i κ α 0 e i κ α 0 i ( κ 1 ) α 0 1 e i κ α 1 e i κ α 1 . 1 . . . . e i κ α ( N 1 ) . . 1 ] [ κ κ * . I dc ] = [ I 0 I 1 . I N 1 ]
I ( t ) = I dc + k = 1 κ a k e ik φ e i α kt + k = 1 κ a k e ik φ e i α kt + η ( t ) ;
r ( p ) = E { I ( t ) I * ( t p ) }
I ( t ) = I dc + a 1 e i φ e i α t + a 1 e i φ e i α t + η ( t )
I * ( t p ) = I dc + a 1 e i φ e i α ( t p ) + a 1 e i φ e i α ( t p ) + η * ( t p )
r ( p ) = E { I ( t ) I * ( t p ) } = E { I dc 2 + I dc a 1 e i φ e i α t + I dc a 1 e i φ e i α t + e i α p ( a 1 2 + I dc a 1 e i φ e i α t + a 1 2 e 2 i φ e 2 i α t ) + e i α p ( a 1 2 + I dc a 1 e i φ e i α t + a 1 2 e 2 i φ e 2 i α t ) + η ( t ) η * ( t p ) }
r ( p ) = E { I dc 2 + c 1 + e i α p ( a 1 2 + c 2 ) + e i α p ( a 1 2 + c 3 ) + η ( t ) η * ( t p ) }
r ( p ) = A 0 2 + A 1 2 e i α p + A 2 2 e i α p + σ 2 δ p , 0
E { η ( k ) η * ( j ) } = σ 2 δ k , j E { η ( k ) η ( k ) } = 0 }
0 2 π e i ψ d ψ = 0
r ( p ) = E [ I ( t ) I * ( t p ) ] = n = 0 2 κ A n 2 e i ω n p + σ 2 δ p , 0
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.