Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Imaging with THz quantum cascade lasers using a Schottky diode mixer

Open Access Open Access

Abstract

An imaging system in reflection geometry based on a multimode 2.9 THz quantum cascade laser as radiation source is reported. The beating between neighbouring longitudinal modes is detected using a room temperature point-contact Schottky diode as mixing element. We show that the technique can, in principle, give a dynamic range of 60 dB with a time constant of ~ 10 μs.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode

S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist
Opt. Lett. 29(14) 1632-1634 (2004)

Terahertz quantum cascade laser as local oscillator in a heterodyne receiver

H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield
Opt. Express 13(15) 5890-5896 (2005)

Three-dimensional imaging with a terahertz quantum cascade laser

K. Lien Nguyen, Michael L. Johns, Lynn F. Gladden, Christopher H. Worrall, Paul Alexander, Harvey E. Beere, Michael Pepper, David A. Ritchie, Jesse Alton, Stefano Barbieri, and Edmund H. Linfield
Opt. Express 14(6) 2123-2129 (2006)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Layout of the experimental apparatus. Laser emission and IF signal spectra are also represented schematically. The separation of ~13 GHz between neighbouring longitudinal Fabry-Perot modes corresponds to a QCL cavity length of 3mm.
Fig 2.
Fig 2. IF power spectrum detected at the output of the SDM with two different resolution bandwidths of the spectrum analyser. The QCL was driven in CW with a current of 1.4 A at T = 10K. The IF signal was amplified with a two-stage, 50 dB gain, 12–14 GHz low noise preamplifier (MITEQ, JSD3 and JSD2 series). Inset: QCL emission spectrum recorded with a Fourier transform infrared spectrometer (0.25 cm-1 resolution).
Fig 3.
Fig 3. Examples of THz images. Left: Image of a gold pattern evaporated on top of a TPX window (100 μm2 pixels). Right: A razor blade imaged through a standard A4 paper sheet (200 μm2 pixels). Regions of different colours correspond to different intensities detected by the mixer as a consequence of the blade surface not being perfectly flat (see text). The light concentric rings visible on the image are produced by rings patterned on the surface of the circular 1mm thick polythene spacer placed between the blade and the paper. Additional non-uniformity of the horizontal edges of the blade (see for instance the bottom edge) is due to the translation stage not regaining exactly the same position in subsequent vertical scans.
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.