Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum noise properties of parametric amplifiers driven by two pump waves

Open Access Open Access

Abstract

In a parametric amplifier (PA) driven by two pump waves the signal sideband is coupled to three idler sidebands, all of which are frequency-converted (FC) images of the signal, and two of which are phase-conjugated (PC) images of the signal. If such a device is to be useful, the signal must be amplified, and the PC and FC idlers must be produced, with minimal noise. In this paper the quantum noise properties of two-sideband (TS) parametric devices are reviewed and the properties of many-sideband devices are determined. These results are applied to the study of two-pump PAs, which are based on the aforementioned four-sideband (FS) interaction. As a general guideline, the more sidebands that interact, the higher are the noise levels. However, if the pump frequencies are tuned to maximize the frequency bandwidth of the FS interaction, the signal and idler noise-figures are only slightly higher than the noise figures associated with the limiting TS interactions.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum noise properties of parametric processes

C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic
Opt. Express 13(13) 4986-5012 (2005)

Translation of quantum states by four-wave mixing in fibers

C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer
Opt. Express 13(22) 9131-9142 (2005)

Parametric instabilities driven by orthogonal pump waves in birefringent fibers

C. J. McKinstrie, S. Radic, and C. Xie
Opt. Express 11(20) 2619-2633 (2003)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Illustration of the constituent FWM processes.
Fig. 2.
Fig. 2. Gains and noise figures of a two-mode parametric amplifier. The solid curves represent the signal, whereas the dashed curves represent the idler. Distance is normalized to the gain length [γε(P 1 P 2)1/2]-1.
Fig. 3.
Fig. 3. Transmissions and noise figures of a two-mode frequency converter. The solid curves represent the signal, whereas the dashed curves represent the idler. Distance is normalized to the interaction length [γϕ(P 1 P 2)1/2]-1.
Fig. 4.
Fig. 4. Gains and noise figures of a four-mode process with quadratic gain, for co-polarized pumps (ε = 2). The solid and long-dashed curves represent the 1- signal and 1+ idler, respectively, and the medium-dashed curves represent the 2- and 2+ idlers. Distance is normalized to the characteristic length (γP)-1.
Fig. 5.
Fig. 5. Gains and noise figures of a four-mode process with quadratic gain, for cross-polarized pumps in a fiber with constant birefringence (ε = 2/3). The solid and long-dashed curves represent the 1- signal and 1+ idler, respectively, and the medium-dashed curves represent the 2- and 2+ idlers. Distance is normalized to the characteristic length (γP)-1.
Fig. 6.
Fig. 6. Gains and noise figures of a four-mode process with quadratic gain, for cross-polarized pumps in a fiber with random birefringence (ε = 1). The solid curve represents the 1- signal, and the long-dashed curves represent the 1+, 2- and 2+ idlers. Distance is normalized to the characteristic length (γP)-1.
Fig. 7.
Fig. 7. Gains and noise figures of a four-mode process with exponential gain, for cross-polarized pumps in a fiber with random birefringence (ε = 1). The solid curves represent the 1- signal, the long-dashed curves represent the 1+ and 2+ idlers, and the medium-dashed curves represent the 2- idler. Distance is normalized to the gain length (2γP)-1.
Fig. 8.
Fig. 8. Gains and noise figures of a four-mode process driven by cross-polarized pumps in a fiber with random birefringence (ε= 1). The solid curves represent the 1- signal, and the long-, medium- and short-dashed curves represent the 1+, 2- and 2+ idlers, respectively. Frequencies are measured relative to the zero-dispersion frequency of the fiber. The vertical lines denote the pump frequencies.
Fig. 9.
Fig. 9. Gains and noise figures of a four-mode process driven by cross-polarized pumps in a fiber with random birefringence (ε= 1). The long-dashed curves represent the 1+ signal, and the solid, medium- and short-dashed curves represent the 1-, 2- and 2+ idlers, respectively. Frequencies are measured relative to the zero-dispersion frequency of the fiber. The vertical lines denote the pump frequencies.
Fig. 10.
Fig. 10. Transmissions and noise figures of a four-mode process driven by cross-polarized pumps in a fiber with random birefringence (ε = 1), plotted as functions of the pump frequency ω 1. The long-dashed curves represent the 1+ signal, and the solid, medium-and short-dashed curves represent the 1-, 2- and 2+ idlers, respectively. Frequencies are measured relative to the zero-dispersion frequency of the fiber.

Equations (202)

Equations on this page are rendered with MathJax. Learn more.

i z A 1 = β 1 ( i t ) A 1 + γ ( A 1 2 + ε A 2 2 ) A 1 ,
i z A 2 = β 2 ( i t ) A 2 + γ ( ε A 1 2 + A 2 2 ) A 2 ,
A 1 ( z ) = P 1 1 2 exp [ i ϕ 1 ( z ) ] ,
A 2 ( z ) = P 1 1 2 exp [ i ϕ 2 ( z ) ] ,
A 1 z t = [ P 1 1 2 + B 1 + ( z ) exp ( iωt ) + B 1 ( z ) exp ( iωt ) ] exp [ i ϕ 1 ( z ) ] ,
A 2 z t = [ P 2 1 2 + B 2 + ( z ) exp ( iωt ) + B 2 ( z ) exp ( iωt ) ] exp [ i ϕ 2 ( z ) ] ,
d z B 1 * = i ( β 1 + γ P 1 ) B 1 * P 1 B 1 +
iγε ( P 1 P 2 ) 1 2 B 2 * iγε ( P 1 P 2 ) 1 2 B 2 + ,
d z B 1 + = P 1 B 1 * + i ( β 1 + + γ P 1 ) B 1 +
+ iγε ( P 1 P 2 ) 1 2 B 2 * + iγε ( P 1 P 2 ) 1 2 B 2 + ,
d z B 2 * = ε ( P 1 P 2 ) 1 2 B 1 * ε ( P 1 P 2 ) 1 2 B 1 +
i ( β 2 + γ P 2 ) B 2 * P 2 B 2 + ,
d z B 2 + = ε ( P 1 P 2 ) 1 2 B 1 * + ε ( P 1 P 2 ) 1 2 B 1 +
+ P 2 B 2 * + i ( β 2 + + γ P 2 ) B 2 + ,
d z ( P 1 P 1 + P 2 P 2 + ) = 0 .
B 1 * ( z ) = C 1 * ( z ) exp [ i ( β 1 + β 1 ) z 2 ] ,
B 1 + ( z ) = C 1 + ( z ) exp [ i ( β 1 + β 1 ) z 2 ]
d z C 1 * = C 1 * C 1 + ,
d z C 1 + = C 1 * + C 1 + ,
C ( z ) = M ( z ) C ( 0 ) ,
M ( z ) = [ cos ( kz ) sin ( kz ) k sin ( kz ) k sin ( kz ) k cos ( kz ) + sin ( kz ) k ]
d z ( P 1 P 1 + ) = 0
B 1 * ( z ) = C 1 * ( z ) exp { i [ β 2 + β 1 + γ ( P 2 + P 1 ) ] z 2 } ,
B 2 * ( z ) = C 2 * ( z ) exp { i [ β 2 + β 1 + γ ( P 2 + P 1 ) ] z 2 }
d z C 1 = C 1 + C 2 ,
d z C 2 = C 1 + C 2 ,
M ( z ) = [ cos ( kz ) sin ( kz ) k sin ( kz ) k sin ( kz ) k cos ( kz ) + sin ( kz ) k ]
d z ( P 1 + P 2 ) = 0
B 1 * ( z ) = C 1 * ( z ) exp { i [ β 2 + β 1 + γ ( P 2 P 1 ) ] z 2 } ,
B 2 + ( z ) = C 2 + ( z ) exp { i [ β 2 + β 1 + γ ( P 2 P 1 ) ] z 2 }
d z C 1 * = C 1 * C 2 + ,
d z C 2 + = C 1 * + C 2 + ,
M ( z ) = [ cos ( kz ) sin ( kz ) k sin ( kz ) k sin ( kz ) k cos ( kz ) + sin ( kz ) k ]
d z ( P 1 P 2 + ) = 0
d z B = LB ,
B j ( z ) B j ( 0 ) exp [ λ j ( 0 ) z + l jj ( 1 ) z ] + k j B k ( 0 ) l jk ( 1 ) exp [ λ k ( 0 ) z ] exp [ λ j ( 0 ) z ] λ k ( 0 ) λ j ( 0 ) .
B ( z ) = M ( z ) B ( 0 ) ,
μ jk ( z ) { exp [ λ j ( 0 ) z + l jj ( 1 ) z ] if k = j , l jk ( 1 ) exp [ λ k ( 0 ) z ] exp [ λ j ( 0 ) z ] λ k ( 0 ) λ j ( 0 ) if k j .
M ( z ) [ 1 iγPz iγPz iγεPz iγεPz iγPz 1 + iγPz iγεPz iγεPz iγεPz iγεPz 1 iγPz iγPz iγεPz iγεPz iγPz 1 + iγPz ] .
M ( z ) [ μ ( z ) ( z ) μ ( z ) ( z ) ( z ) μ ( z ) ( z ) μ ( z ) μ ( z ) ( z ) μ ( z ) ( z ) ( z ) μ ( z ) ( z ) μ ( z ) ] ,
[ a ̂ j , a ̂ k ] = δ jk ,
D ω k = ω 2 n 2 ( ω ) c 2 k 2 ,
E + t z = E 0 t z exp [ i ϕ 0 t z ] ,
B + t z = B 0 t z exp [ i ϕ 0 t z ]
t T 0 + z S 0 =0,
T 0 = ( D ω ) 0 E 0 2 4 π ω 0 ,
S 0 = ( D k ) 0 E 0 2 4 π ω 0
E ̂ 0 t z = ( 2 π h ̄ ω 0 n 0 c ) 1 2 a ̂ ( ω ) exp [ ( ω ) z iωt ] ( 2 π ) 1 2 ,
B ̂ 0 t z = ( 2 π h ̄ ω 0 n 0 c ) 1 2 a ̂ ( ω ) exp [ ( ω ) z iωt ] ( 2 π ) 1 2 ,
[ a ̂ ( ω ) , a ̂ ( ω ) ] = δ ( ω ω ) ,
T ̂ 0 t z dz = h ̄ ω 0 a ̂ ( ω ) a ̂ ( ω ) .
a ̂ ω z = a ̂ ( ω ) exp [ ( ω ) z ]
a ̂ t z = a ̂ ( ω ) exp [ ( ω ) z iωt ] ( 2 π ) 1 2 .
a ̂ t z a ̂ t z dt = a ̂ ω z a ̂ ω z
[ a ̂ ( ω ) , a ̂ ( ω , z ) ] = δ ( ω ω ) ,
[ a ̂ t z , a ̂ ( t , z ) ] = δ ( t t ) .
i z a ̂ = β ( i t ) a ̂ ,
S ̂ 0 t z = h ̄ ω 0 a ̂ t z a ̂ t z
m ̂ T t z = t T 2 t + T 2 a ̂ ( t , z ) a ̂ ( t , z ) dt .
{ α } = exp ( a ̂ α a ̂ α ) { 0 } ,
a α = α ( ω ) a ̂ ( ω )
a ̂ α = α ω z a ̂ ω z ,
α ω z = α ( ω ) exp [ ( w ) z ]
a ̂ ω z { α } = α ω z { α } ,
a ̂ t z { α } = α t z { α } ,
m ̄ T t z = t T 2 t + T 2 α ( t , z ) 2 dt .
δ m T 2 t z = m ̄ T t z .
a ̂ k = ω k Δ 2 ω k + Δ 2 a ̂ ( ω ) Δ 1 2 .
[ a k , a l ] = δ kl ,
a ̂ j ( t , z ) = ( v L ) 1 2 k a ̂ k exp [ ( ω k ) z i ω k t ] .
m ̂ T ( t , z ) = ( Tv / L ) k , l sinc ( ω lk T / 2 ) a ̂ k a ̂ l exp ( i β lk z i ω lk t ) ,
α j = exp ( α j a ̂ j α j * a ̂ j ) 0 .
a ̂ j α j = α j α j ,
m ̄ T = ( Tv / L ) m ̄ j ,
δ m T 2 = m ¯ T .
B = MA ,
M ( z ) = [ μ * ( z ) v * ( z ) v ( z ) μ ( z ) ]
μ 2 v 2 = 1 .
n 1 = μ 2 a 1 a 1 + v 2 a 2 a 2 + μ * v a 1 a 2 + μ v * a 2 a 1 ,
n 2 = v 2 a 1 a 1 + μ 2 a 2 a 2 + μ v * a 1 a 2 + μ * v a 2 a 1 .
n 1 = μ 2 m 1 + v 2 ( m 2 + 1 ) ,
n 2 = v 2 ( m 1 + 1 ) + μ 2 m 2 .
n 1 2 = ( μ 2 a 1 a 1 + v 2 a 2 a 2 ) 2 + ( μ * v a 1 a 2 + μ v * a 2 a 1 ) 2
+ ( μ 2 a 1 a 1 + v 2 a 2 a 2 ) ( μ * v a 1 a 2 + μ v * a 2 a 1 )
+ ( μ * v a 1 a 2 + μ v * a 2 a 1 ) ( μ 2 a 1 a 1 + v 2 a 2 a 2 ) .
δ n 1 2 = μ 2 v 2 ( 2 m 1 m 2 + m 1 + m 2 + 1 ) .
ψ = m 1 = 0 [ p ( m 1 ) ] 1 2 exp ( i m 1 ϕ ) m 1 , 0 ,
n 1 = μ 2 m ̄ 1 + v 2 ,
n 2 = v 2 ( m ̄ 1 + 1 ) .
δ n 1 2 = μ 4 m ̄ 1 + μ 2 v 2 ( m ̄ 1 + 1 ) ,
δ n 2 2 = v 4 m ̄ 1 + μ 2 v 2 ( m ̄ 1 + 1 ) .
F 1 = m ̄ 1 [ G 2 m ̄ 1 + G ( G 1 ) ( m ̄ 1 + 1 ) ] [ G m ̄ 1 + ( G 1 ) ] 2 ,
F 2 = m ̄ 1 [ ( G 1 ) 2 m ̄ 1 + G ( G 1 ) ( m ̄ 1 + 1 ) ] ( G 1 ) 2 + ( m ̄ 1 + 1 ) 2 .
M ( z ) = [ μ ( z ) v ( z ) v * ( z ) μ * ( z ) ] .
μ 2 + v 2 = 1 .
n 1 = μ 2 a 1 a 1 + v 2 a 2 a 2 + μ * v a 1 a 2 + μ v * a 2 a 1 ,
n 2 = v 2 a 1 a 1 + μ 2 a 2 a 2 μ * v a 1 a 2 μ v * a 2 a 1 .
n 1 = μ 2 m 1 + v 2 m 2 ,
n 2 = v 2 m 1 + μ 2 m 2 .
n 1 2 = ( μ 2 a 1 a 1 + v 2 a 2 a 2 ) 2 + ( μ * v a 1 a 2 + μ v * a 2 a 1 ) 2
+ ( μ 2 a 1 a 1 + v 2 a 2 a 2 ) ( μ * v a 1 a 2 + μ v * a 2 a 1 )
+ ( μ * v a 1 a 2 + μ v * a 2 a 1 ) ( μ 2 a 1 a 1 + v 2 a 2 a 2 ) .
δ n 1 2 = μ 2 v 2 ( 2 m 1 m 2 + m 1 + m 2 ) .
n 1 = μ 2 m ̄ 1 ,
n 2 = v 2 m ̅ 1 .
δ n 1 2 = μ 4 m ̄ 1 + μ 2 v 2 m ̅ 1 ,
δ n 2 2 = v 4 m ̅ 1 + μ 2 v 2 m ̅ 1 .
F 1 = 1 T ,
F 2 = 1 ( 1 T ) .
B = MA ,
μ 11 2 μ 12 2 + μ 13 2 = 1 .
μ 21 2 + μ 22 2 μ 23 2 = 1 .
n 1 = μ 11 2 a 1 a 1 + μ 12 2 a 2 a 2 + μ 13 2 a 3 a 3 + μ 11 μ 12 * a 1 a 2 + μ 12 μ 11 * a 2 a 1
+ μ 12 μ 13 * a 2 a 3 + μ 13 μ 12 * a 3 a 2 + μ 13 μ 11 * a 3 a 1 + μ 11 μ 13 * a 1 a 3 ,
n 2 = μ 21 2 a 1 a 1 + μ 22 2 a 2 a 2 + μ 23 2 a 3 a 3 + μ 21 * μ 22 a 1 a 2 + μ 22 * μ 21 a 2 a 1
+ μ 22 * μ 23 a 2 a 3 + μ 23 * μ 22 a 3 a 2 + μ 23 * μ 21 a 3 a 1 + μ 21 * μ 13 a 1 a 3 .
n 1 = μ 11 2 m 1 + μ 12 2 ( m 2 + 1 ) + μ 13 2 m 3 ,
n 2 = μ 21 2 ( m 1 + 1 ) + μ 22 2 m 2 + μ 23 2 ( m 3 + 1 ) .
δ n 1 2 = μ 11 μ 12 2 ( 2 m 1 m 2 + m 1 + m 2 + 1 )
+ μ 12 μ 13 2 ( 2 m 2 m 3 + m 2 + m 3 + 1 )
+ μ 13 μ 11 2 ( 2 m 3 m 1 + m 3 + m 1 ) ,
δ n 2 2 = μ 21 μ 22 2 ( 2 m 1 m 2 + m 1 + m 2 + 1 )
+ μ 22 μ 23 2 ( 2 m 2 m 3 + m 2 + m 3 + 1 )
+ μ 23 μ 21 2 ( 2 m 3 m 1 + m 3 + m 1 ) .
n 1 = μ 11 2 m ̄ 1 + μ 12 2 ,
n 2 = μ 21 2 ( m ̄ 1 + 1 ) + μ 23 2 .
δ n 1 2 = μ 11 4 m ¯ 1 + μ 11 μ 12 2 ( m ¯ 1 + 1 ) + μ 12 μ 13 2 + μ 13 μ 11 2 m ¯ 1 ,
δ n 2 2 = μ 21 4 m ¯ 1 + μ 21 μ 22 2 ( m ¯ 1 + 1 ) + μ 22 μ 23 2 + μ 23 μ 21 2 m ¯ 1 .
F 1 = m ¯ 1 [ μ 11 4 m ¯ 1 + μ 11 μ 12 2 ( m ¯ 1 + 1 ) + μ 12 μ 13 2 + μ 13 μ 11 2 m ¯ 1 ] [ μ 11 2 m ¯ 1 + μ 12 2 ] 2 ,
F 2 = m ¯ 1 [ μ 21 4 m ¯ 1 + μ 21 μ 22 2 ( m ¯ 1 + 1 ) + μ 22 μ 23 2 + μ 23 μ 21 2 m ¯ 1 ] [ μ 21 2 ( m ¯ 1 + 1 ) + μ 23 2 ] 2 .
F 1 1 + ( μ 12 2 + μ 13 2 ) μ 11 2 ,
F 2 1 + ( μ 22 2 + μ 23 2 ) μ 21 2 .
k μ jk 2 s jk = 1 ,
n j = k μ jk 2 ( m k + σ jk ) ,
δ n j 2 = k , l > k μ jk μ jl 2 ( 2 m k m l + m k + m l + σ kl ) ,
n j = μ ji 2 m ̄ i + k μ jk 2 σ jk
δ n j 2 = μ ji 4 m ¯ i + k i μ ji μ jk 2 m ¯ i + k , l > k μ jk μ jl 2 σ kl ,
F j = m ¯ i ( μ ji 4 m ¯ i + k i μ ji μ jk 2 m ¯ i + k , l > k μ jk μ jl 2 σ kl ) ( μ ji 2 m ¯ i + k μ jk 2 σ jk ) 2 .
F j 1 + k i μ jk 2 μ ji 2 .
F 1 ± = 2 + 2 ε 2 ,
F 2 ± = 2 + 2 ε 2 .
F 1 ± = F 2 ± = 4 .
d z B = LB ,
d z 0 B ( 0 ) L ( 0 ) B ( 0 ) = 0 ,
d z 0 B ( 1 ) L ( 0 ) B ( 1 ) = d z 1 B ( 0 ) + L ( 1 ) B ( 0 ) ,
B j ( 0 ) ( z 0 ) = C j ( 0 ) exp [ λ j ( 0 ) z 0 ] ,
d z 0 B j ( 1 ) λ j ( 0 ) B j ( 1 ) = d z 1 C j ( 0 ) exp [ λ j ( 0 ) z 0 ] + k l jk ( 1 ) C k ( 0 ) exp [ λ k ( 0 ) z 0 ] .
d z 1 C j ( 0 ) = l jj ( 1 ) C j ( 0 ) ,
C j ( 0 ) ( z 1 ) = C j ( 0 ) ( 0 ) exp [ l jj ( 1 ) z 1 ] .
B j ( 1 ) ( z 0 ) = k j l jk ( 1 ) C k ( 0 ) [ λ k ( 0 ) z 0 ] exp [ λ j ( 0 ) z 0 ] λ k ( 0 ) λ j ( 0 ) .
B ( z ) = M ( z ) B ( 0 ) ,
M ( z ) 1 + Lz .
d z G j = i β e H j ,
d z H j = i ( β e + 2 γP ) G j + i 2 γεP G k ,
[ d zz 2 + β e ( β e + 2 γ P ) ] G 1 + 2 β e γε P G 2 = 0 ,
2 β e γε P G 1 + [ d zz 2 + β e ( β e + 2 γ P ) ] G 2 = 0 .
k ± 2 = β e [ β e + 2 γ ( 1 ± ε ) P ] .
G 1 = 1 2 cos ( k + z ) + i σ β e 2 k + sin ( k + z ) + 1 2 cos ( k z ) i σ β e 2 k sin ( k z ) ,
H 1 = σ 2 cos ( k + z ) + i k + 2 β e sin ( k + z ) + σ 2 cos ( k z ) i k 2 β e sin ( k z ) ,
G 2 = 1 2 cos ( k + z ) + i σ β e 2 k + sin ( k + z ) 1 2 cos ( k z ) i σ β e 2 k sin ( k z ) ,
H 2 = σ 2 cos ( k + z ) + i k + 2 β e sin ( k + z ) σ 2 cos ( k z ) i k 2 β e sin ( k z ) .
C 1 * = 1 σ 4 cos ( k + z ) + i 4 ( σ β e k + k + β e ) sin ( k + z )
+ 1 σ 4 cos ( k z ) + i 4 ( σ β e k k β e ) sin ( k z ) ,
C 1 + = 1 + σ 4 cos ( k + z ) + i 4 ( σ β e k + + k + β e ) sin ( k + z )
+ 1 + σ 4 cos ( k z ) + i 4 ( σ β e k + k β e ) sin ( k z ) ,
C 2 * = 1 σ 4 cos ( k + z ) + i 4 ( σ β e k + k + β e ) sin ( k + z )
1 σ 4 cos ( k z ) i 4 ( σ β e k k β e ) sin ( k z ) ,
C 2 + = 1 + σ 4 cos ( k + z ) + i 4 ( σ β e k + + k + β e ) sin ( k + z )
1 + σ 4 cos ( k z ) i 4 ( σ β e k + k + β e ) sin ( k z ) .
d z G j = i β je H j ,
d z H j = i ( β je + 2 γ P j ) G j + i 2 γε ( P j P k ) 1 2 G k ,
[ d zz 2 + β 1 e ( β 1 e + 2 γ P 1 ) ] G 1 + 2 β 1 e γε ( P 1 P 2 ) 1 2 G 2 = 0 ,
2 β 2 e γε ( P 1 P 2 ) 1 2 G 1 + [ d zz 2 + β 2 e ( β 2 e + 2 γ P 2 ) ] G 2 = 0 .
2 k ± 2 = β 1 e ( β 1 e + 2 γ P 1 ) + β 2 e ( β 2 e + 2 γ P 2 )
+ { [ β 1 e ( β 1 e + 2 γ P 1 ) β 2 e ( β 2 e + 2 γ P 2 ) ] 2
+ 4 [ 4 β 1 e β 2 e ( γε ) 2 P 1 P 2 ] } 1 2 .
G 1 = cos ( k + z ) 1 α 1 + α 1 + i σ β 1 e sin ( k + z ) k + ( 1 α 1 + α 1 )
+ cos ( k z ) 1 α 1 α 1 + + i σ β 1 e sin ( k z ) k ( 1 α 1 α 1 + ) ,
H 1 = σ cos ( k + z ) 1 α 1 + α 1 + i k + sin ( k + z ) β 1 e ( 1 α 1 + α 1 )
+ σ cos ( k z ) 1 α 1 α 1 + + i k sin ( k z ) β 1 e ( 1 α 1 α 1 + ) ,
G 2 = α 1 + cos ( k + z ) 1 α 1 + α 1 + i σ α 1 + β 1 e sin ( k + z ) k + ( 1 α 1 + α 1 )
+ α 1 cos ( k z ) 1 α 1 α 1 + + i σ α 1 β 1 e sin ( k z ) k ( 1 α 1 α 1 + ) ,
H 2 = σ α 1 + β 1 e cos ( k + z ) β 2 e ( 1 α 1 + α 1 ) + i α 1 + k + sin ( k + z ) β 2 e ( 1 α 1 + α 1 )
+ σ α 1 β 1 e cos ( k z ) β 2 e ( 1 α 1 α 1 + ) + i α 1 k sin ( k z ) β 2 e ( 1 α 1 α 1 + ) ,
α 1 ± = [ k ± 2 β 1 e ( β 1 e + 2 γ P 1 ) ] 2 β 1 e γε ( P 1 P 2 ) 1 2 .
C 1 * = ( 1 σ ) cos ( k + z ) 2 ( 1 α 1 + α 1 ) + ( σ β 1 e k + k + β 1 e ) i sin ( k + z ) 2 ( 1 α 1 + α 1 ) + ( + ) ,
C 1 + = ( 1 + σ ) cos ( k + z ) 2 ( 1 α 1 + α 1 ) + ( σ β 1 e k + + k + β 1 e ) i sin ( k + z ) 2 ( 1 α 1 + α 1 ) + ( + ) ,
C 2 * = α 1 + ( 1 σ β 1 e β 2 e ) cos ( k + z ) 2 ( 1 α 1 + α 1 ) + ( σ β 1 e k + k + β 2 e ) i α 1 + sin ( k + z ) 2 ( 1 α 1 + α 1 ) ,
C 2 + = α 1 + ( 1 + σ β 1 e β 2 e ) cos ( k + z ) 2 ( 1 α 1 + α 1 ) + ( σ β 1 e k + + k + β 2 e ) i α 1 + sin ( k + z ) 2 ( 1 α 1 + α 1 ) .
B = MA ,
k μ jk 2 s jk = 1 ,
j μ jk 2 s jk = 1 ,
d z B = LB ,
b j ( z ) = n e j ( n ) f k ( n ) * exp [ λ ( n ) z ] b k ( 0 ) ,
μ jk = n e j ( n ) f k ( n ) * exp [ λ ( n ) z ] .
L = [ i δ 1 i δ 2 i δ 3 i δ 4 ] ,
l kj = l jk s jk .
l ki ( n + 1 ) = j l kj l ji ( n )
= j l jk s jk l ij ( n ) s ij
= j l ij ( n ) l jk s ij s jk .
l ki ( n + 1 ) = l ik ( n + 1 ) s ik ,
μ kj = μ jk s jk .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.