Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analytical characterization of optical power and noise figure of forward pumped Raman amplifiers

Open Access Open Access

Abstract

We show that it is possible to find analytic expressions for characterizing the evolution of signal and noise photon numbers along the active fiber of a forward-pumped Raman amplifier with unequal signal and pump loss coefficients. We confirm the validity of the result by comparing the analytical solutions with numerical calculations and by analytically deriving the well-known 3 dB noise figure limit for high Raman gain. Apart from aiding the analysis and design of forward pumped Raman amplifiers, these results also enable one to find approximate analytical solutions for bidirectional Raman amplifiers and backward pumped Raman amplifiers with Rayleigh backscattering and Brillouin scattering.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimizing gain profile and noise performance for distributed fiber Raman amplifiers

Xueming Liu, Jian Chen, Chao Lu, and Xiaoqun Zhou
Opt. Express 12(24) 6053-6066 (2004)

Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers

Paul L. Voss and Prem Kumar
Opt. Lett. 29(5) 445-447 (2004)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. A schematic diagram of forward pumped Raman amplifier.
Fig. 2.
Fig. 2. Photon number, n(z), against fiber length for two different pump powers PP and pump loss coefficients αP
Fig. 3.
Fig. 3. I(z) against fiber length for two different pump loss coefficients,αP = 0.4 dB/km and αP = 0.3 dB/km.
Fig. 4.
Fig. 4. Noise Figure against fiber length for two different pump loss coefficients: (a) αP = 0.4 dB/km (b) αP = 0.3 dB/km

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

dn ( z ) dz = γ n p ( z ) ( n ( z ) + 1 ) α S n ( z )
d n P ( z ) dz = γ n p ( z ) ( n ( z ) + 1 ) α P n P ( z )
n P ( z ) = n P ( 0 ) exp ( α p z )
dn ( z ) dz + ( α S γ n P ( 0 ) exp ( α P z ) ) n ( z ) = γ n p ( 0 ) exp ( α P z )
n ( z ) = i = 0 n i ( z ) α i
d n 0 ( z ) dz + ( α P γ n P ( 0 ) exp ( α P z ) ) n 0 ( z ) = γ n p ( 0 ) exp ( α P z )
d n i ( z ) dz + ( α P γ n P ( 0 ) exp ( α P z ) ) n i ( z ) = α P n i 1 ( z ) , i 0
n 0 ( z ) = H P ( z ) exp ( u 0 ) n ( 0 ) + H P ( z ) ( Ei ( u 0 ) Ei ( u ( z ) ) ) u 0
Ei ( x ) = P . V . x u 1 exp ( u ) du , x > 0
n 1 ( z ) = α P H P ( z ) ( exp ( u 0 ) n ( 0 ) + u 0 Ei ) u 0 ) ) z α P H P ( z ) u 0 0 z Ei ( u ( z ) ) dz
0 z Ei ( u ( z ) ) dz ( C + ln ( u 0 ) ) z α P 2 z 2 + u 0 ln ( u 0 ) α P ( 1 u 2 ( z ) u 0 2 )
n 1 ( z ) = α α P × exp ( u 0 ) n ( 0 ) z + α P 2 u 0 z 2 + ( Ei ( u 0 ) C ln ( u 0 ) ) ) u 0 z u 0 1 + ln ( u 0 ) α P ( 1 u 2 ( z ) u 0 2 ) H P ( z )
n ( z ) H P ( z ) ( exp ( u 0 ) n ( 0 ) + u 0 ( Ei ( u 0 ) Ei ( u ( z ) ) )
+ α α P × exp ( u 0 ) n ( 0 ) z + α P 2 u 0 z 2 + ( Ei ( u 0 ) C ln ( u 0 ) ) ) u 0 z u 0 1 + ln ( u 0 ) α P ( 1 u 2 ( z ) u 0 2 )
+ i = 2 ( α P z ) i i ! ( exp ( u 0 ) n ( 0 ) + u 0 Ei ( u 0 ) ) α i
n ( z ) = G S ( z ) n ( 0 ) + ( α P α S ) H P ( z ) H S ( z ) ( z )
+ H S ( z ) u 0 Ei ( u 0 ) H P ( z ) u 0 Ei ( u ( z ) )
( z ) = α P 2 u 0 z 2 u 0 ( C + ln ( u 0 ) ) z u 0 1 + ln ( u 0 ) α P ( 1 u 2 ( z ) u 0 2 )
n ( z ) α = 0 = G S ( z ) n ( 0 ) + u 0 H S ( z ) × ( Ei ( u 0 ) Ei ( u ( z ) ) )
n ( z ) = G S ( z ) × n ( 0 )
n ( z ) = G S ( z ) × n ̂ ( z )
d n ̂ ( z ) dz = α P u 0 exp ( α P αz u 0 ( 1 exp ( α P z ) ) )
n ̂ ( 0 ) = n ( 0 ) + u 0 exp ( u 0 ) × I ( z )
I ( z ) = 1 u 0 α u ( z ) u 0 v α 1 exp ( v ) dv
I ( z ) = k = 0 ( α ) k u 0 k ( α + 1 ) k k ! ( u ( z ) u 0 ) α k = 0 ( α ) k u k ( z ) ( α + 1 ) k k !
Φ ( a ; b ; z ) = k = 0 ( a ) k z k ( b ) k k !
n ( z ) = G S ( z ) n ( 0 ) + u 0 H S ( z ) α ( Φ ( α ; α + 1 ; u 0 ) Φ ( α ; α + 1 ; u ( z ) ) ( u ( z ) u 0 ) α )
n noise ( 0 ) = u 0 exp ( u 0 ) α ( Φ ( α ; α + 1 ; u 0 ) Φ ( α ; α + 1 ; u ( z ) ) ( u ( z ) u 0 ) α )
n ( z ) α = 0 = G S ( z ) n ( 0 ) +
u 0 H S ( z ) × lim α 0 d ( Φ ( α ; α + 1 ; u 0 ) Φ ( α ; α ; + 1 ; u ( z ) ) ( u ( z ) u 0 ) α )
n ( z ) α = 0 = G S ( z ) n ( 0 ) + u 0 H S ( z ) × ( k = 1 u 0 k k · k ! + ln ( u 0 ) k = 1 u k ( z ) k · k ! ln ( u ( z ) ) )
Ei ( x ) = C + ln ( x ) + k = 1 x k k · k !
NF ( z ) = 1 + 2 ( n ( z ) G S ( z ) n ( 0 ) ) G S ( z )
NF a ( z ) = 1 + 2 ( α P α S ) H P ( z ) H S ( z ) ( z ) + 2 ( H S ( z ) u 0 Ei ( u 0 ) H P ( z ) u ( z ) Ei ( u ( z ) ) ) exp ( u 0 ) H S ( z )
NF e ( z ) = 1 G ( z ) + 2 u 0 exp ( u 0 ) α ( Φ ( α ; α + 1 , u 0 ) Φ ( α ; α + 1 , u ( z ) ) )
NF a ( z ) 2 ( u 0 Ei ( u 0 ) u ( z ) Ei ( u ( z ) ) ) exp ( u 0 )
Ei ( x ) = exp ( x ) x ( 1 + O ( 1 x ) )
dn ( z ) dz = ( k = 1 M γ k n Pk ( z ) ) ( n ( z ) + 1 ) α S n ( z )
dn P i ( z ) dz = γ i n P i ( z ) ( k = 1 k i M nPk ( z ) + n ( z ) + 1 ) α Pi n Pi ( z ) , i = 1,2 , , M
n ( z ) = i = 0 n i ( z ) ( 1 αM k = 1 M α k ) i
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.