Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimal coupling of entangled photons into single-mode optical fibers

Open Access Open Access

Abstract

We present a consistent multimode theory that describes the coupling of single photons generated by collinear Type-I parametric down-conversion into single-mode optical fibers. We have calculated an analytic expression for the fiber diameter which maximizes the pair photon count rate. For a given focal length and wavelength, a lower limit of the fiber diameter for satisfactory coupling is obtained.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Noncollinear correlated photon pair source in the 1550 nm telecommunication band

Tae-Gon Noh, Heonoh Kim, Chun Ju Youn, Seok-Beom Cho, Jongcheol Hong, Taehyoung Zyung, and Jaewan Kim
Opt. Express 14(7) 2805-2810 (2006)

Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP

Matthew Pelton, Philip Marsden, Daniel Ljunggren, Maria Tengner, Anders Karlsson, Anna Fragemann, Carlota Canalias, and Fredrik Laurell
Opt. Express 12(15) 3573-3580 (2004)

Compact source of polarization-entangled photon pairs

P. Trojek, Ch. Schmid, M. Bourennane, H. Weinfurter, and Ch. Kurtsiefer
Opt. Express 12(2) 276-281 (2004)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1. Schematic of the experimental setup to determine pair photon coupling in fibers

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

A ( 2 ) = E H + ( r 1 , t 1 ) E H + ( r 2 , t 2 )
d 3 r 3 d 3 k 1 d 3 k 2 U k 1 λ 1 * ( r 3 ) U k 2 λ 2 * ( r 3 ) U k 0 λ 0 ( r 3 ) f p ( r 3 ) ( ω k 0 2 ε 0 ) 1 2 ( ω k 1 2 ε 0 ) 1 2 ( ω k 2 2 ε 0 ) 1 2
× α k 0 , 0 E I ( + ) ( r 2 , t 2 ) E I ( + ) ( r 1 , t 1 ) ω k 0 , k 1 , k 2 δ ( ω k 1 ω k 2 ω k 0 )
E + ( r , t ) = i λ λ d 3 k d 3 k ( ω k 2 ε 0 ) 1 2 ε k λ β k λ , k λ U k λ f ( r ) e i ω t a k λ
β k λ k λ = d x d y U k λ in ( x , y ) U k λ f * ( x , y )
d 3 k 1 d 3 k 2 f ˜ p ( k 1 t + k 2 t ) sin c ( Δ k 1 z k 2 z d 2 ) β k 1 λ 1 β k 2 λ 2 U f ( r 1 ) U f ( r 2 )
× ( ω k 1 2 ε 0 ) 1 2 ( ω k 2 2 ε 0 ) 1 2 e i ω k 1 t 1 e i ω k 2 t 2 δ ( ω k 0 ω k 1 ω k 2 )
f ( r t ) exp ( x 2 + y 2 w p )
f ˜ p ( k 1 t + k 2 t ) exp ( 1 4 w p 2 v 2 ( ω k 1 ω k 2 ) 2 sin 2 θ * )
U k λ in ( x , y ) = 1 i k d e i k ( d + d ) e i k 2 d ( x 2 + y 2 ) 0 2 π 0 R r d θ d r ( e i ( k 2 d k 2 f ) r 2 e i k ( x cos θ d + y sin θ d ) r )
U f ( x , y ) = 1 w 0 π exp ( x 2 + y 2 2 w 0 2 )
β k λ w 0 2 d 2 + i k w 0 4 d k d w 0 ( d 2 + k 2 w 0 4 ) ( 1 e ( A k + i B k ) R 2 ) ( A k + i B k )
A k = k 2 w 0 2 2 ( d 2 + k 2 w 0 4 )
B k = ( 1 2 d 1 2 f ) k k 3 w 0 4 2 d ( d 2 + k 2 w 0 4 )
A ( 2 ) e i τ x x 2 Δ 2 ( 1 e ( a + b x ) ) 2 d x
a = ( k * 2 w 0 2 2 f 2 i k * 3 w 0 4 2 f 3 ) R 2
b = ( k * w 0 2 n g c f 2 i 3 2 n g k * 2 w 0 4 2 c f 3 ) R 2
C ( 1 4 e y + 6 e 2 y 4 e 3 y + e 4 y )
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.