Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical fiber microcoil resonator

Open Access Open Access

Abstract

The optical microfiber coil resonator with self-coupling turns is suggested and investigated theoretically. This type of a microresonator has a three-dimensional geometry and complements the well-known Fabry-Perot (one-dimensional geometry, standing wave) and ring (two-dimensional geometry, traveling wave) types of microresonators. The coupled wave equations for the light propagation along the adiabatically bent coiled microfiber are derived. The particular cases of a microcoil having two and three turns are considered. The effect of microfiber radius variation on the value of Q-factor of resonances is studied.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator

Fei Xu, Peter Horak, and Gilberto Brambilla
Appl. Opt. 46(4) 570-573 (2007)

Slow-light element for tunable time delay based on optical microcoil resonator

Chengju Ma, Liyong Ren, and Yiping Xu
Appl. Opt. 51(26) 6295-6300 (2012)

Optical Snakes and Ladders: Dispersion and nonlinearity in microcoil resonators

N. G. R. Broderick
Opt. Express 16(20) 16247-16254 (2008)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Microcoils having a - two turns, b - three turns, c - multiple turns and non-uniform pitch.
Fig. 2.
Fig. 2. Microcoil with two coupling turns. The turns are assumed to be parallel in the region of coupling. (x,y,s) is the common for two turns local coordinate system, n(s) is their normal and b(s) is their binormal at point s.
Fig.3.
Fig.3. Q-factors of the two-turn microcoil as a function of separation of the coupling parameter from the resonant value. The fiber is uniform and propagation losses are ignored.
Fig. 4.
Fig. 4. Group delay dependencies on the inverse propagation constant, 2πnf /β 0, for the value of refractive index of the fiber nf = 1.46; a - a microcoil with two turns; b - a microcoil with three turns.

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

E ( q 1 , q 2 , s ) = F 0 ( q 1 , q 2 , s ) exp ( i s β ( s ) ds )
β ( s ) = β 0 + δβ ( s ) , δβ ( s ) < < β 0 .
E t ( x , y , s ) = A 1 ( s ) exp ( i s 1 s β 1 ( s ) ) F 0 ( x , y ) + A 2 ( s ) exp ( i s 1 s β 2 ( s ) ) F 0 ( x , y p ( s ) )
s ( A 1 ( s ) A 2 ( s ) ) = i ( 0 χ 12 χ 21 0 ) ( A 1 ( s ) A 1 ( s ) ) , χ pq ( s ) = κ ( s ) exp ( 2 i s 1 s ( β p ( s ) β q ( s ) ) ds )
A 2 ( s 1 ) = A ( s 1 + S ) exp ( i s 1 s 1 + S β 1 ( s ) ds )
d ds ( A 1 A 2 A m A M 1 A M ) = i ( 0 χ 12 ( s ) 0 0 0 0 χ 21 ( s ) 0 χ 23 ( s ) 0 0 0 0 χ 32 ( s ) 0 0 0 0 0 0 0 0 χ M 1 , M 2 ( s ) 0 0 0 0 χ M 2 , M 1 ( s ) 0 χ M 1 , M ( s ) 0 0 0 0 χ M , M 1 ( s ) 0 ) ( A 1 A 2 A m A M 1 A M ) ,
χ pq ( s ) = κ pq ( s ) exp ( 2 i s 1 s ( β p ( s ) β q ( s ) ) ds ) .
A m + 1 ( s 1 ) = A m ( s 1 + S ) exp [ i s 1 s 1 + S β m ( s ) ds ] , m = 1,2 M 1 .
Δβ ( s ) = 1 2 ( β 1 ( s ) β 2 ( s ) )
Δβ ( s ) < < κ ( s )
T = exp ( i s 1 s 1 + S β 1 ( s ) ds ) + Ξ 1 + exp ( i s 1 s 1 + S β 1 ( s ) ds ) Ξ * exp ( i s 1 s 1 + S β 2 ( s ) ds ) ,
Ξ = 1 2 [ ( 1 ε 1 + ε 2 ) e iK ( 1 + ε 1 * + ε 2 * ) e iK ] ,
t d = n f c d ln ( T ) d β 0 ,
K = K m = ( 2 m 1 ) π 2 ,
β 0 S = β 0 n S = 2 n π + π 2 + Im ε 1 s 1 s 1 + S ds δ β 1 ( s ) ,
Δ t d mn 2 n f S c ( K K m ) 2 + ( Re ε 1 ) 2 ( β 0 β 0 n ) 2 S 2 + 1 4 [ ( K K m ) 2 + ( Re ε 1 ) 2 ] 2 .
Q = βS ( K K m ) 2 + ( Re ε 1 ) 2 .
Re ε 1 = Δ β 0 κ 0 .
Δ β 0 β 0 ~ Δ r r .
T ( β ) = Q 2 ( β ) Q 2 * ( β ) ,
Q 2 ( β ) = e iβS 2 1 / 2 i sin ( 2 1 / 2 K ) e iβS sin 2 ( 2 1 / 2 K )
K = K m ( 1 ) = ( 2 m 1 ) π / 2 1 / 2 , βS = β n S = ,
K = K ( 2 ) = 2 1 / 2 [ ε arcsin ( 3 1 / 2 ) + m π ] , βS = β S = ( 2 n + ε 2 ) π , ε = ± 1 ,
2 E + ( ( E , ln ( n 2 ) ) ) + ( 2 πn λ ) 2 E = 0 ,
r ( q 1 , q 2 , s ) = r ( 0,0 , s ) + q 1 e 1 + q 2 e 2 ,
e 1 = n cos ( Λ ( s ) ) b sin ( Λ ( s ) ) ,
e 2 = n sin ( Λ ( s ) ) b cos ( Λ ( s ) ) ,
Λ ( s ) = s τ ( s ) ds
n ( q 1 , q 2 , s ) = n 0 ( q 1 , q 2 ) + Δn ( q 1 , q 2 , s ) ,
Δ = 1 G ( q 1 , q 2 , s ) [ s 1 G ( q 1 , q 2 , s ) s + j = 1 2 q j G ( q 1 , q 2 , s ) q j ]
= ( 1 G ( q 1 , q 2 , s ) s , q 1 , q 2 )
G ( q 1 , q 2 , s ) = 1 ρ ( s ) ( q 1 cos Λ ( s ) q 2 sin Λ ( s ) )
E ( q 1 , q 2 , s ) = F 0 ( q 1 , q 2 , s ) exp ( i s β ( s ) ds ) .
Λ 0 ( s ) = s s + S ds τ ( s )
ρ ( s ) = 4 π 2 R p 2 ( s ) + 4 π 2 R 2 , τ ( s ) = 2 πp ( s ) p 2 ( s ) + 4 π 2 R 2
ρ ( s ) = 1 R , τ ( s ) = p ( s ) 2 π R 2 .
e 1 ( 0 ) = n ,
e 2 ( 0 ) = b
G ( q 1 , q 2 , s ) = 1 q 1 R
cos ( Λ ( s ) ) = 1 ,
sin ( Λ ( s ) ) = 1 2 π R 2 0 s p ( s ) ds .
κ ( s ) = ( n f 2 n e 2 ) β { 2 π 2 λ 2 ∫∫ x 2 + y 2 < r 2 dxdy [ F 0 x ( x , y ) ( F 0 x ( x , y p ( s ) ) + F 0 y ( x , y ) ( F 0 y ( x , y p ( s ) ) ]
+ 1 2 n f 2 x 2 + y 2 = r 2 dl r ( x F 0 x ( x , y ) + y F 0 y ( x , y ) ) ( F 0 x ( x , y p ( s ) ) x + F 0 y ( x , y p ( s ) ) y ] } ,
x 2 + y 2 < dxdy ( F 0 x ( x , y ) F 0 x ( x , y ) + F 0 y ( x , y ) F 0 y ( x , y ) ) = 1 .
Δβ ( s ) = 1 2 ( β 1 ( s ) β 2 ( s ) )
A 1 ( s 1 ) = A 01
A 2 ( s 1 ) = A 02
A 1 ( s 1 + S ) = 1 2 [ ( A 01 + A 02 ) ( 1 + ε 1 + ε 2 ) e iK + ( A 01 A 02 ) ( 1 ε 1 * + ε 2 * ) e iK ] ,
A 2 ( s 1 + S ) = 1 2 [ ( A 01 + A 02 ) ( 1 ε 1 + ε 2 ) e iK ( A 01 A 02 ) ( 1 + ε 1 * + ε 2 * ) e iK ]
K = s 1 s 1 + S ds κ ( s ) ,
ε 1 = i s 1 s 1 + S dsΔβ ( s ) [ exp ( 2 i s s 1 + S ds′ κ ( s′ ) ) 1 ] ,
ε 2 = 2 i s c 1 s c 2 dsκ ( s ) ( s 1 s ds Δβ ( s′ ) ) [ s 1 s ds Δβ ( s′ ) exp ( 2 i s′ s ds′′ κ ( s′′ ) ) ] .
ε 2 + ε 2 * = ε 1 ε 1 *
T = A 2 ( s 1 + S ) A 1 ( s 1 ) exp ( i s 1 s 1 + S ds β 2 ( s ) )
A 1 ( s 1 + S ) exp ( i s 1 s 1 + S ds β 1 ( s ) ) = A 2 ( s 1 )
β 1 ( s 1 + S ) = β 2 ( s 1 )
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved