Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering

Open Access Open Access

Abstract

We report on measurements in transmission of the speckle produced by scattering liquid media: diluted milk and water solutions of polystyrene-microspheres of different diameters. The speckle size is affected not only by scattering parameters such as the optical thickness, but also by the dimensions of the scatters. From the speckle measurement, we propose a method to differentiate media. Moreover, a calculation of the transmitted light profile by Monte Carlo simulation allowed us to get a better insight on the speckle size evolution versus scattering.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Backscattered speckle size as a function of polarization: influence of particle-size and -concentration

Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun
Opt. Express 13(13) 5030-5039 (2005)

Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation

Y. Piederriere, J. Le Meur, J. Cariou, J.F. Abgrall, and M.T. Blouch
Opt. Express 12(19) 4596-4601 (2004)

Statistical speckle study to characterize scattering media: use of two complementary approaches

O. Carvalho, B. Clairac, M. Benderitter, and L. Roy
Opt. Express 15(21) 13817-13831 (2007)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Speckle produced by a weak diffusing medium.
Fig. 2.
Fig. 2. cIm (x, 0) calculated from speckle of fig. 1.
Fig. 3.
Fig. 3. Experimental set-up (top view).
Fig. 4.
Fig. 4. dxm versus θ.
Fig. 5.
Fig. 5. dym versus θ.
Fig. 6.
Fig. 6. dym versus ls, the opticalthickness for semi-skimmed milk.
Fig. 7.
Fig. 7. dym versus ls, the optical thickness for skimmed milk.
Fig. 8.
Fig. 8. dc versus ls for skimmed milk.
Fig.9. .
Fig.9. . dym versus ls and linear fit for different polystyrene-microspheres.
Fig. 10.
Fig. 10. Contrast evolution versus ls for different polystyrene-microspheres.
Fig. 11.
Fig. 11. dc versus ls for the polystyrene-microspheres.

Tables (3)

Tables Icon

Table 1. Scattering coefficients of polystyrene microspheres measured.

Tables Icon

Table 2. Anisotropy factor of polystyrene microspheres calculated.

Tables Icon

Table 3. Parameters obtained with the proposed method for polystyrene microspheres.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P ( r , q ) s = μ t P ( r , q ) + μ s 4 π 4 π P ( r , q ) β ( q , q ) d Ω
R I ( Δ x , Δ y ) = I ( x 1 , y 1 ) I ( x 2 , y 2 )
R I ( Δ x , Δ y ) = R I ( x , y )
c I ( x , y ) = R I ( x , y ) I ( x , y ) 2 I ( x , y ) 2 I ( x , y ) 2
R I ( x , y ) = FT 1 [ PSD I ( υ x , υ y ) ]
PSD I ( υ x , υ y ) = FT [ I ( x , y ) ] 2
c I m ( x , y ) = FT 1 [ FT [ I ( x , y ) ] 2 ] I ( x , y ) 2 I ( x , y ) 2 I ( x , y ) 2
R I ( x , y ) = I 2 [ 1 + μ A ( x , y ) 2 ]
μ A ( x , y ) 2 = P ( u , v ) exp [ i 2 π λ z ( ux + vy ) ] dudv P ( u , v ) dudv 2 = c I ( x , y )
{ X = x λ z Y = y λ z
c I ( x , y ) = F p ( X , Y ) 2 P ( u , v ) dudv 2
F p ( X , Y ) = P ( u , v ) exp [ i 2 π ( uX + vY ) ] dudv
c I c ( x ) = F p ( X ) 2 P ( u ) du 2
d y m ( θ = 5 ° ) d y m ( θ = 0 ° )
d y m = 30 l s + 219
d y m = 48 l s + 218
d c = 66 l s + 216
C = I 2 ( x , y ) I ( x , y ) 2 I ( x , y )
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.