Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mode classification and degeneracy in photonic crystal fibers

Open Access Open Access

Abstract

A novel full vector model based on the supercell lattice method is presented to analyze photonic crystal fiber (PCF). From symmetry analysis waveguide modes, we classify PCF modes into nondegenerate or degenerate pairs according to the minimum waveguide sectors and their appropriate boundary conditions. We describe how the modes of the PCF can be labeled by step-index fiber analogs, with the exception of modes that have the same symmetry as the PCF. When the doublet of the degenerate pairs both have the same symmetry as the PCF, they will be split into two nondegenerate modes.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Dependence of mode characteristics on the central defect in elliptical hole photonic crystal fibers

Wang Zhi, Ren Guobin, Lou Shuqin, and Jian Shuisheng
Opt. Express 11(17) 1966-1979 (2003)

Supercell lattice method for photonic crystal fibers

Wang Zhi, Ren Guobin, Lou Shuqin, and Jian Shuisheng
Opt. Express 11(9) 980-991 (2003)

Symmetry and degeneracy in microstructured optical fibers

M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten
Opt. Lett. 26(8) 488-490 (2001)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Reconstruction of the dielectric structure of a triangular lattice TIR-PCF with the parameters Λ=2.3µm, d/Λ=0.6, P 1=50, P 2=500. (a) Three-dimensional (3-D) refractive-index reconstruction. (b) Cross section along the y=0 axis of index reconstruction.
Fig. 2.
Fig. 2. Minimum sectors for waveguides with C symmetry. The modes of waveguides are classified into eight classes (p=1,….8). Solid lines indicate short-circuit boundary conditions, dashed lines indicate open-circuit boundary conditions.
Fig. 3.
Fig. 3. Mode index of the first 24 modes in TIR-PCF with structural parameters Λ=2.3µm, d/Λ=0.8 at λ=633nm.
Fig. 4.
Fig. 4. Total modal intensity distribution of HE11 mode (a) and 2-D electric vector distributions of polarization doublet modes (b), (c) with parameters Λ=2.3µm, d/Λ=0.8, at wavelength λ=633nm.
Fig. 5.
Fig. 5. Electric vector distributions for modes 3, 4, 5, 6 corresponding to (a) TE01, (b), (c) HE21, and (d) TM01 mode of step-index fiber.
Fig. 6.
Fig. 6. Intensity distribution of the combination of modes 4 and 5 (HE21).
Fig. 7.
Fig. 7. Electric vector distributions of mode 7–14.
Fig. 8
Fig. 8 Intensity distributions of nondegenerate mode HE311, degenerate mode EH11, HE12 and EH21.
Fig. 9.
Fig. 9. Modal intensity distribution of EH311 mode (a) and 2-D electric vector distributions of EH311 and EH312 modes (b), (c) with parameters Λ=2.3µm, d/Λ=0.9, at wavelength λ=0.633µm.
Fig. 10.
Fig. 10. Minimum sectors for waveguides with C symmetry. The waveguides modes are divided into eight classes (p=1,….6). Solid lines indicate short-circuit boundary conditions; dashed lines indicate open-circuit boundary conditions.
Fig. 11.
Fig. 11. Electric vector distributions for modes 3–6 of the square lattice PCF.
Fig. 12.
Fig. 12. intensity distributions of nondegenerate modes HE211 and TE01 of a square lattice PCF.

Tables (2)

Tables Icon

Table 1. Mode-index (n eff ), mode class (p), degeneracy, computation error (Δn) and label for first 14 modes

Tables Icon

Table 2. Mode index (n eff ), mode class (p), degeneracy, computation error (Δn), and label for first eight modes

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E j ( x , y , z ) = [ e j t ( x , y ) + e j z ( x , y ) ] e j ( β j z ω t ) ,
( t 2 β j 2 + k 2 n 2 ) e x = x ( e x In n 2 x + e y In n 2 y ) ,
( t 2 β j 2 + k 2 n 2 ) e y = y ( e x In n 2 x + e y In n 2 y ) ,
e x ( x , y ) = a , b = 0 F 1 ε a b x ψ a ( x ) ψ b ( y ) ,
e y ( x , y ) = a , b = 0 F 1 ε a b y ψ a ( x ) ψ b ( y ) ,
ψ i ( s ) = 2 i 2 π 1 4 ( i ) ! ω exp ( s 2 2 ω 2 ) H i ( s ω ) ,
n 2 ( x , y ) = a , b = 0 P 1 1 P 1 a b cos 2 π a x l 1 x cos 2 π b y l 1 y + a , b = 0 P 2 1 P 2 a b cos 2 π a x l 2 x cos 2 π b y l 2 y ,
In n 2 ( x , y ) = a , b = 0 P 1 1 P 1 a b In cos 2 π a x l 1 x cos 2 π b y l 1 y + a , b = 0 P 2 1 P 2 ab ln cos 2 π a x l 2 x cos 2 π b y l 2 y ,
L [ e x e y ] = [ I abcd ( 1 ) + k 2 I abcd ( 2 ) + I abcd ( 3 ) x I abcd ( 4 ) x I abcd ( 4 ) y I abcd ( 1 ) + k 2 I abcd ( 2 ) + I abcd ( 3 ) y ] [ e x e y ] = β j 2 [ e x e y ] ,
I abcd ( 1 ) = + ψ a ( x ) ψ b ( y ) t 2 [ ψ c ( x ) ψ d ( y ) ] dx dy ,
I abcd ( 2 ) = + n 2 ψ a ( x ) ψ b ( y ) ψ c ( x ) ψ d ( y ) dx dy ,
I abcd ( 3 ) x = + ψ a ( x ) ψ b ( y ) x [ ψ c ( x ) ψ d ( y ) In n 2 x ] dx dy ,
I abcd ( 3 ) y = + ψ a ( x ) ψ b ( y ) y [ ψ c ( x ) ψ d ( y ) In n 2 y ] dx dy ,
I abcd ( 4 ) x = + ψ a ( x ) ψ b ( y ) x [ ψ c ( x ) ψ d ( y ) In n 2 y ] dx dy ,
I abcd ( 4 ) y = + ψ a ( x ) ψ b ( y ) y [ ψ c ( x ) ψ d ( y ) In n 2 x ] dx dy .
e t = i k 2 n 2 β 2 { β t e z ( μ 0 ε 0 ) 1 2 k z ̂ × t h z } .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.