Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical reconstruction of digital holograms with variable viewing angles

Open Access Open Access

Abstract

Here we describe a new method for numerically reconstructing an object with variable viewing angles from its hologram(s) within the Fresnel domain. The proposed algorithm can render the real image of the original object not only with different focal lengths but also with changed viewing angles. Some representative simulation results and demonstrations are presented to verify the effectiveness of the algorithm.

©2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Digital recording and numerical reconstruction of holograms: an optical diagnostic for combustion

Xudong Xiao and Ishwar K. Puri
Appl. Opt. 41(19) 3890-3899 (2002)

Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri
Opt. Express 13(24) 9935-9940 (2005)

Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology

Christoph Wagner, Sönke Seebacher, Wolfgang Osten, and Werner Jüptner
Appl. Opt. 38(22) 4812-4820 (1999)

Supplementary Material (3)

Media 1: GIF (145 KB)     
Media 2: GIF (1584 KB)     
Media 3: GIF (1607 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Reconstruction with changed viewing angles.
Fig. 2.
Fig. 2. (a) Recording and reconstructing a hologram; (b) Texture of the object.
Fig. 3.
Fig. 3. (a) Magnitude; (b) phase of the object wave on the hologram.
Fig. 4.
Fig. 4. (GIF, 145KB) A demo of reconstructing the real object with fixed li =1.2m but with changed viewing angles from -75° to 75°.
Fig. 5.
Fig. 5. (a) Texture of layer 1 at 1.0m; (b) Texture of the layer 2 at 1.2m.
Fig. 6.
Fig. 6. (a) Magnitude; (b) phase of the object wave on the hologram.
Fig. 7.
Fig. 7. (a) (GIF, 1.54MB) A demo of reconstructing the real object with fixed viewing angle θ = 45° but with changed focal length between 1.0m and 1.2m; (b) (GIF, 1.56MB) A demonstration with both the viewing angle and the focal length adjusted.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( x o , y o , z o ) = iE 0 λ ∫∫ τ x y exp ( iky sin θ ) exp [ ikr ( x , y , x o , y o ) ] r ( x , y , x o , y o ) χ ( x , y , x o , y o ) dxdy
r = ( z o y sin θ ) 2 + ( x o x ) 2 + ( y o y cos θ ) 2
E ( x o , y o , z o ) = exp ( ikr o ) ∫∫ τ x y exp [ ik 2 r o ( x 2 + y 2 ) ]
× exp { ik r o [ x o x + y o y cos θ + ( z o r o ) y sin θ ] } dxdy
ik 2 r o ( x 2 + y 2 ) ik 2 z o ( x 2 + y 2 )
ξ = x o λr o
η = 1 λ r o [ y o cos θ + ( z o r o ) sin θ ]
E ( ξ , η , z o ) = exp ( ikr o ) τ x y exp [ ik 2 z o ( x 2 + y 2 ) ] exp [ i 2 π ( ξx + ηy ) ] dxdy
Δ f x o = 1 δx o Np λz o , and Δ f y o = 1 δy o Np cos θ λz o
P = α z o Δ f x o · α z o Δ f y o N 2 cos θ
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.