Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling of holographic gratings in graded-index photorefractive planar waveguides

Open Access Open Access

Abstract

A numerical model is presented for the evaluation of the dielectric permittivity tensor changes as induced by guided modes during the formation of holographic gratings in arbitrary photorefractive graded-index planar waveguides. Comparisons among lithium niobate waveguides with different cuts and technology are shown.

©2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Planar hologram gratings in photorefractive waveguides in LiNbO3

G. Glazov, I. Itkin, V. Shandarov, E. Shandarov, and S. Shandarov
J. Opt. Soc. Am. B 7(12) 2279-2288 (1990)

Photorefractive gratings in planar optical waveguides in cubic crystals

Yu. Salikaev and S. Shandarov
J. Opt. Soc. Am. B 11(9) 1727-1735 (1994)

Electromagnetic waves in graded-index planar waveguides

M. Bednarik and M. Cervenka
J. Opt. Soc. Am. B 37(12) 3631-3643 (2020)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Δε 11 dielectric perturbation in a Y-cut LiNbO3 graded-index waveguide, x-propagating without overlay at T = 300 K, induced by the collinear TE0-TM0 mode interaction at λ = 632.8 nm.
Fig. 2.
Fig. 2. Δε 13 dielectric perturbation in the same waveguide.
Fig. 3.
Fig. 3. Δε 22 dielectric tensor perturbation in the same waveguide.
Fig. 4.
Fig. 4. Δε 23 dielectric tensor perturbation in the same waveguide.

Tables (2)

Tables Icon

Table I. Comparison among LiNbO3 cuts in Gaussian profile waveguides.

Tables Icon

Table II. Comparison among different X-cut LiNbO3 technologies.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d 2 φ d cut 2 K g 2 ε ρ S ε cut S φ = f ( t ) t 0 ε cut S ( i K g δ ρ ph + δ cut ph cut )
φ = φ ( cut , ρ , t ) = φ 0 ( cut , t 0 ) f ( t ) exp ( j K g ρ )
δ ph = β E A E B * exp ( j K g ρ )
d 2 φ 0 d cut 2 K g 2 ε ρ S ε cut S φ 0 = t 0 ε cut S ( j K g [ β E A E B ] ρ + cut [ β E A E B ] cut )
Δ b p = k = 1 3 r pk ξ k p = 1 , , 6
ξ = ( ξ 1 , ξ 2 , ξ 3 ) = { ( φ x , 0 , j K g φ ) [ X-cut ] ( j K g φ , φ y , 0 ) [ Y-cut ] ( j K g φ , 0 , φ z ) [ Z-cut ]
{ Δ ε 11 = ( b 2 S + Δ b 2 ) ( b 3 S + Δ b 3 ) Δ b 4 2 det ( b ) ε 11 S Δ ε 12 = Δ ε 21 = ( b 3 S + Δ b 3 ) Δ b 6 Δ b 4 Δ b 5 det ( b ) Δ ε 13 = Δ ε 31 = Δ b 4 Δ b 6 ( b 2 S + Δ b 2 ) Δ b 5 det ( b ) Δ ε 22 = ( b 1 S + Δ b 1 ) ( b 3 S + Δ b 3 ) Δ b 5 2 det ( b ) ε 22 S Δ ε 23 = Δ ε 32 = ( b 1 S + Δ b 1 ) Δ b 4 Δ b 5 Δ b 6 det ( b ) Δ ε 33 = ( b 1 S + Δ b 1 ) ( b 2 S + Δ b 2 ) Δ b 6 2 det ( b ) ε 33 S
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.